题目
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。
数据范围
1≤n,m≤100000,
图中涉及边长绝对值均不超过 10000。
图解spfa
分析spfa
SPFA算法仅仅只是对Bellman_ford算法的一个优化。
Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。
Bellman_ford算法可以存在负权回路,是因为其循环的次数是有限制的因此最终不会发生死循环;但是SPFA算法不可以,由于用了队列来存储,只要发生了更新就会不断的入队,因此假如有负权回路请你不要用SPFA否则会死循环。
代码
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N = 100010;
int n,m;
int h[N],w[N],e[N],ne[N],idx;
int dist[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}
int spfa()
{
memset(dist,0x3f,sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while(q.size())
{
int t = q.front();
q.pop();
st[t] = false;
for(int i = h[t];i != -1;i = ne[i])
{
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
//如果没有被查询过
if(!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return dist[n];
}
int main()
{
cin >> n >> m;
memset(h,-1,sizeof h);
while(m--)
{
int a,b,c;
cin >> a >> b >> c;
add(a,b,c);
}
int t = spfa();
if(t == 0x3f3f3f3f) puts("impossible");
else printf("%d\n",t);
return 0;
}